Accumulated precipitation data for agriculture

Accumulated precipitation data for agriculture

Precipitation, mostly rains, has a huge impact on agriculture. For plants to grow, they need at least a small amount of water, and rain is still one of the most effective ways of watering despite the development of modern technologies.

Too much or too little precipitation is bad and even harmful for agricultural plants. Drought can destroy the harvest and increase erosion, and overly humid weather can trigger the growth of unfavourable fungi. Also, different kinds of plants demand different amounts of precipitation. For example, some succulent species require little water, while tropical plants need hundreds of inches of rain a year just to continue living.

The fluctuation in precipitation amounts is quite substantial in continental climates. They fluctuate more in a month than during a year. A considerable variation in precipitation leads to situations where drought takes place during the years with low amounts, thus forming areas of unstable hydration. With a long absence of rains and at high temperatures, the reserves of moisture in the soil dry out due to evaporation.

A previous arid season brings a shortage of crop yield even in a humid season, as the harvest lacks enough time for ripening. Thus disadvantageous conditions for ordinary plant development are established, and the crop yield of agricultural plants decreases or perishes.

Along with precipitation amounts, the number of days with precipitation in a month or a year is also a significant climatic index. Plants are sensitive to whether a given precipitation amount falls all at once during just a few days, or it rains often and the amount is distributed comparatively evenly throughout a month. For instance, even one great downpour in a prairie area in summer has little ability to improve an arid situation.

By employing a data set of precipitation amounts and a number of days, one can calculate an accumulated precipitation amount for any region during a specific period of time.

Accumulated temperature data for agriculture

Accumulated temperature data for agriculture

Temperature, and especially accumulated temperature, is an important factor and plays a fundamental role in agricultural productivity. Plants and insects develop in accordance with the temperature. The warmer the weather, the faster they grow and reproduce; the colder it is, the more slowly these processes go.

All species have a biological minimum temperature level, below which development does not take place at all. When the temperature of the environment begins to exceed this minimum level, it gives a start to growth and reproduction. The value of this basic temperature (or a development threshold) has a crucial significance, and it differs between species of plants and insects.

Accumulated temperature (AT) represents an integrated excess or lack of temperature in relation to a fixed starting point. This index is calculated as the sum of the average daily temperatures of air and soil, above a chosen threshold of 0°C, 5°C or 10°C, or a biological minimum temperature level.

Basically, this is a way of including temperature and time into one dimension for quantitative evaluation of the speed of growth of plants and insects. Usually the index of accumulated temperature data is used to create models of crop growth.

In the near future, we will introduce our new API for accumulated temperature data. It will be based on historical data, and will be focused primarily on users in the agricultural sector.

We are happy to announce significant improvements in one of our products – API for UV-index

We are happy to announce significant improvements in one of our products – API for UV-index

We are happy to announce that one of our products – API for UV-index – has been significantly improved.

  • Now, as well as current and historical data, you can also get UVI forecasts for periods of 8 days.
  • The syntax has been made considerably easier: it has become clearer and more unified, like other API versions.
  • There is a new feature to request data for any geographic coordinates without limits on accuracy.
  • The accuracy level of the UVI modelled data has been doubled (the interpolation grid step has been reduced from 0.5 to 0.25 degrees).  
  • Soon, searching by city/town name, city/town ID and postal/ZIP code will be available.

You can find the instructions for the updated version at http://openweathermap.org/api/uvi.

Access to the UV-index data will be available for all our plans. For more information on our plans, please visit http://openweathermap.org/price.

The previous version of the API (http://openweathermap.org/api/old-uvi) will soon be announced as deprecated, and no further support will then be provided for this version.

We use cookies to personalize content and to analyze our traffic. Please decide if you are willing to accept cookies from our website.